DNA damage response in male gametes of Cyrtanthus mackenii during pollen tube growth
نویسندگان
چکیده
Male gametophytes of plants are exposed to environmental stress and mutagenic agents during the double fertilization process and therefore need to repair the DNA damage in order to transmit the genomic information to the next generation. However, the DNA damage response in male gametes is still unclear. In the present study, we analysed the response to DNA damage in the generative cells of Cyrtanthus mackenii during pollen tube growth. A carbon ion beam, which can induce DNA double-strand breaks (DSBs), was used to irradiate the bicellular pollen, and then the irradiated pollen grains were cultured in a liquid culture medium. The male gametes were isolated from the cultured pollen tubes and used for immunofluorescence analysis. Although inhibitory effects on pollen tube growth were not observed after irradiation, sperm cell formation decreased significantly after high-dose irradiation. After high-dose irradiation, the cell cycle progression of generative cells was arrested at metaphase in pollen mitosis II, and phosphorylated H2AX (γH2AX) foci, an indicator of DSBs, were detected in the majority of the arrested cells. However, these foci were not detected in cells that were past metaphase. Cell cycle progression in irradiated generative cells is regulated by the spindle assembly checkpoint, and modification of the histones surrounding the DSBs was confirmed. These results indicate that during pollen tube growth generative cells can recognize and manage genomic lesions using DNA damage response pathways. In addition, the number of generative cells with γH2AX foci decreased with culture prolongation, suggesting that the DSBs in the generative cells are repaired.
منابع مشابه
Fertilization Requires Communication: Signal Generation and Perception During Pollen Tube Guidance
The generation of novel hybrid lines is critically limited by the compatibility between pollen and pistil and their ability to achieve successful seed formation. Fertilization in flowering plants requires the successful transfer of the male gametes from the pollen grain to the egg contained within an ovule. This occurs via the formation of a tubular protrusion from the pollen grain – the pollen...
متن کاملFemale Control of Male Gamete Delivery during Fertilization in Arabidopsis thaliana
Fertilization in both animals and plants relies on the correct targeting of the male gametes to the female gametes. In flowering plants, the pollen tube carries two male gametes through the maternal reproductive tissues to the embryo sac, which contains two female gametes. The pollen tube then releases its two male gametes into a specialized receptor cell of the embryo sac, the synergid cell. T...
متن کاملPeptide signalling during the pollen tube journey and double fertilization.
Flowering seed plants (angiosperms) have evolved unique ways to protect their gametes from pathogen attack and from drying out. The female gametes (egg and central cell) are deeply embedded in the maternal tissues of the ovule inside the ovary, while the male gametes (sperm cells) are enclosed in the vegetative pollen tube cell. After germination of the pollen tube at the surface of papilla cel...
متن کاملPathfinding in angiosperm reproduction: pollen tube guidance by pistils ensures successful double fertilization.
Sexual reproduction in flowering plants is unique in multiple ways. Distinct multicellular gametophytes contain either a pair of immotile, haploid male gametes (sperm cells) or a pair of female gametes (haploid egg cell and homodiploid central cell). After pollination, the pollen tube, a cellular extension of the male gametophyte, transports both male gametes at its growing tip and delivers the...
متن کاملSelf-incompatibility in the Iranian Almond Cultivar ‘Mamaei’ Using Pollen Tube Growth, Fruit Set and PCR Technique
Self-incompatibility has been studied by using controlled pollination, pollen tube growth and PCR methods in the Iranian almond ‘Mamaei.’. Pollen tube growth and fruit set following self and cross-pollination treatments were evaluated. The percentage of initial and final fruit set was determined for each treatment at 30 and 60 days after controlled pollination. Pollen germination and pollen ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2013